corpy
Release 0.5

David Lukes <dafydd.lukes@gmail.com)

Jan 17, 2023

5

Installation

Help and feedback
What is CorPy?
License

Indices and tables

Python Module Index

Index

USER GUIDES

35
37
39

41

corpy, Release 0.5

USER GUIDES 1

https://corpy.readthedocs.io/en/stable/?badge=stable
https://badge.fury.io/py/corpy

corpy, Release 0.5

2 USER GUIDES

CHAPTER
ONE

INSTALLATION

[$ python3 -m pip install corpy

Only recent versions of Python 3 (3.10+) are supported by design.

corpy, Release 0.5

4 Chapter 1. Installation

CHAPTER
TWO

HELP AND FEEDBACK

If you get stuck, it’s always a good idea to start by searching the documentation, the short URL to which is https:
/[corpy.rtfd.io/.

The project is developed on GitHub. You can ask for help via GitHub discussions and report bugs and give other
kinds of feedback via GitHub issues. Support is provided gladly, time and other engagements permitting, but cannot
be guaranteed.

https://corpy.rtfd.io/
https://corpy.rtfd.io/
https://github.com/dlukes/corpy
https://github.com/dlukes/corpy/discussions
https://github.com/dlukes/corpy/issues

corpy, Release 0.5

6 Chapter 2. Help and feedback

CHAPTER
THREE

WHAT IS CORPY?

A fancy plural for corpus ;) Also, a collection of handy but not especially mutually integrated tools for dealing with
linguistic data. It abstracts away functionality which is often needed in practice for teaching and/or day to day work at
the Czech National Corpus, without aspiring to be a fully featured or consistent NLP framework.

Here’s an idea of what you can do with CorPy:
* add linguistic annotation to raw textual data using either UDPipe or MorphoDiTa
* easily generate word clouds

* run code in a sanitized global environment (useful for debugging in interactive sessions, e.g. with Jupyter note-
books in JupyterLab)

 generate phonetic transcripts of Czech texts
e wrangle corpora in the vertical format devised originally for CWB, used also by (No)SketchEngine

* plus some command line utilities

Note: Should I pick UDPipe or MorphoDiTa?

Both are developed at UFAL MFF UK. UDPipe has more features at the cost of being somewhat more complex: it
does both morphological tagging (including lemmatization) and syntactic parsing, and it handles a number of different
input and output formats. You can also download pre-trained models for many different languages.

By contrast, MorphoDiTa only has pre-trained models for Czech and English, and only performs morphological tagging
(including lemmatization). However, its output is more straightforward — it just splits your text into tokens and annotates
them, whereas UDPipe can (depending on the model) introduce additional tokens necessary for a more explicit analysis,
add multi-word tokens etc. This is because UDPipe is tailored to the type of linguistic analysis conducted within the
UniversalDependencies project, using the CoONLL-U data format.

MorphoDiTa can also help you if you just want to tokenize text and don’t have a language model available.

3.1 Tag and parse text with UDPipe

NOTE: When playing around with UDPipe interactively, it’s highly recommended to use IPython or a Jupyter notebook.
You’ll automatically get nice pretty-printing.

https://korpus.cz
https://corpy.rtfd.io/en/stable/guides/udpipe.html
https://corpy.rtfd.io/en/stable/guides/morphodita.html
https://corpy.rtfd.io/en/stable/guides/vis.html
https://corpy.rtfd.io/en/stable/guides/clean_env.html
https://jupyterlab.rtfd.io
https://corpy.rtfd.io/en/stable/guides/phonetics_cs.html
https://corpy.rtfd.io/en/stable/guides/vertical.html
http://cwb.sourceforge.net/
https://nlp.fi.muni.cz/trac/noske/
https://corpy.rtfd.io/en/stable/guides/cli.html
https://ufal.mff.cuni.cz/
https://ufal.mff.cuni.cz/udpipe
https://corpy.rtfd.io/en/stable/guides/udpipe.html
http://ufal.mff.cuni.cz/udpipe/models
https://ufal.mff.cuni.cz/morphodita
http://ufal.mff.cuni.cz/morphodita/users-manual
https://corpy.rtfd.io/en/stable/guides/morphodita.html
https://corpy.rtfd.io/en/stable/guides/morphodita.html
https://universaldependencies.org
https://universaldependencies.org/format.html
https://ipython.org/
https://jupyter.org/

corpy, Release 0.5

3.1.1 Overview

UDPipe is a fast and convenient library for stochastic morphological tagging (including lemmatization) and syntactic
parsing of text. The corpy.udpipe module aims to give easy access to the most commonly used features of the library;
for more advanced use cases, including if you need speedups in performance critical code, you might need to use the
more lower-level ufal.udpipe package, on top of which this module is built.

In order to use UDPipe, you need a pre-trained model for your language of interest. Models are available for many
languages, for more information, refer to the UDPipe website. When using the models, please make sure to respect
their CC BY-NC-SA license!

In order to better understand how UDPipe represents tagged and parsed text, it is useful to familiarize yourself with the
CoNLL-U data format. UDPipe data structures (sentences, words, multi-word tokens, empty nodes, comments) map
onto concepts defined in this format.

In addition to this guide, there is also an API reference for corpy.udpipe. For an overview of the API of underlying
ufal.udpipe objects (listing available attributes and methods), see here.

3.1.2 Processing text

Tagging and parsing text using UDPipe is fairly simple. Just load a UDPipe Model:

>>> from corpy.udpipe import Model
>>> m = Model("./czech-pdt-ud.udpipe")

And process some text using the process () method (the method creates a generator, so you’ll need e.g. 1list() to
tease all of the elements out of it):

>>> sents = list(m.process("Je zima. Bude snézit."))
>>> sents
[<Swig Object of type 'sentence *' at 0x...>, <Swig Object of type 'sentence *' at 0x...>

-]

Ouch. This output is not really helpful. This is why it’s recommended to use IPython or Jupyter, because at a regular
Python REPL, the output of UDPipe is rendered as opaque Swig objects.

However, if the IPython package is at least installed, you can explicitly pretty-print the output using the pprint ()
function:

>>> from corpy.udpipe import pprint
>>> pprint(sents)
[Sentence(
comments=['# newdoc', '# newpar', '# sent_id = 1', '# text = Je zima.'],
words=[
Word(id=0, <root>),
Word(id=1,
form="Je"',
lemma="byt"',
xpostag="'VB-S---3P-AA---",
upostag="AUX",

feats=
— '"Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Fin|Voice=Act',
head=2,
deprel="cop'),
Word(id=2,

(continues on next page)

8 Chapter 3. What is CorPy?

http://ufal.mff.cuni.cz/udpipe
https://pypi.org/project/ufal.udpipe/
http://ufal.mff.cuni.cz/udpipe/models
https://universaldependencies.org/format.html
https://pypi.org/project/ufal.udpipe/
https://ipython.org/
https://jupyter.org/
http://www.swig.org/

corpy, Release 0.5

(continued from previous page)

form="zima',

lemma="zima"',

xpostag="NNFS1----- A----",

upostag="NOUN',
feats="'Case=Nom|Gender=Fem|Number=Sing|Polarity=Pos"',
head=0,

deprel="root',

misc='SpaceAfter=No'),

Word(id=3,
form=".",
lemma=".",
xpostag='Z:--------————- ',
upostag="PUNCT',
head=2,
deprel="punct')]),
Sentence (
comments=["# sent_id = 2', '# text = Bude snézit.'],
words=[
Word(id=0, <root>),
Word(id=1,
form="Bude',
lemma="byt"',

xpostag="'VB-S---3F-AA---",
upostag="AUX",

feats=
< '"Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Fut |VerbForm=Fin|Voice=Act',
head=2,
deprel="aux'),
Word(id=2,

form="snézit',

lemma="snézit"',

xpostag="'Vf-----——- A----",

upostag='VERB',

feats="Aspect=Imp|Polarity=Pos|VerbForm=Inf",

head=0,

deprel="root',

misc="'SpaceAfter=No'),
Word(id=3,

form=".",

lemma=".",

xpostag="Z:-------—-—-————- ,

upostag="PUNCT"',

head=2,

deprel="punct',

misc="'SpaceAfter=No')])]

J

.

Much better! And again, calling pprint(sents) is not necessary when using IPython or Jupyter, you can just evaluate
sents and it will be pretty-printed automatically.

3.1. Tag and parse text with UDPipe 9

https://ipython.org/
https://jupyter.org/

corpy, Release 0.5

3.1.3 Pretty-printing options

The output of UDPipe can be quite verbose — the individual objects have many fields. However, some values are not
really that interesting (e.g. the empty string for string attributes, or -1 for integer attributes). Therefore, they are hidden
by the pretty-printer by default, so as to make the output more concise.

Sometimes though, you might want exhaustive pretty-printing, e.g. to learn about all of the possible attributes, even
though your output doesn’t happen to have any useful values in them. In order to do that, disable the digest option
using the pprint_config() function:

>>> from corpy.udpipe import pprint_config
>>> pprint_config(digest=False)
>>> pprint(sents)
[Sentence(
comments=["'# newdoc', '# newpar', '# sent_id = 1', '# text = Je zima.'],
words=[
Word(id=0,
form="<root>",
lemma="<root>",
xpostag="'<root>",
upostag="<root>"',
feats="<root>",
head=-1,
deprel="",
deps="'",
misc=""),
Word(id=1,
form="Je"',
lemma="byt"',
xpostag="'VB-S---3P-AA---",
upostag="AUX",
feats=
< '"Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Fin|Voice=Act"',
head=2,
deprel="cop',
deps="'",
misc=""),
Word(id=2,
form="zima',
lemma="zima',
xpostag="NNFS1----- A----",
upostag="NOUN',
feats="'Case=Nom|Gender=Fem|Number=Sing|Polarity=Pos',
head=0,
deprel="root"',
deps="'",
misc='SpaceAfter=No'),
Word(id=3,
form=".",
lemma=".",
xpostag='Z:------——————- ,
upostag="PUNCT"',
feats="",
head=2,

(continues on next page)

10 Chapter 3. What is CorPy?

corpy, Release 0.5

(continued from previous page)

deprel="punct',
deps="",
misc="")],
multiwordTokens=[],
emptyNodes=[]),
Sentence(
comments=["# sent_id = 2', '# text = Bude snézit.'],
words=[
Word(id=0,
form="<root>",
lemma="<root>",
xpostag="'<root>",
upostag="<root>",
feats="<root>"',
head=-1,
deprel="",
deps="'",
misc=""),
Word(id=1,
form="Bude',
lemma="byt"',
xpostag="'VB-S---3F-AA---",
upostag="AUX",
feats=
— '"Mood=Ind | Number=Sing|Person=3|Polarity=Pos|Tense=Fut |VerbForm=Fin|Voice=Act',
head=2,
deprel="aux',
deps="'",
misc=""),
Word(id=2,
form="snézit',
lemma="snézit"',
xpostag="Vf-------- A----",
upostag='VERB',
feats="Aspect=Imp|Polarity=Pos|VerbForm=Inf",
head=0,
deprel="root',
deps="'",
misc="'SpaceAfter=No'),
Word(id=3,
form=".",
lemma=".",
xpostag='Z:-------—-————- ,
upostag="PUNCT"',
feats="",
head=2,
deprel="punct',
deps="",
misc="'SpaceAfter=No')],
multiwordTokens=[],
emptyNodes=[])]

Let’s turn digest back on to save space below.

3.1. Tag and parse text with UDPipe 11

corpy, Release 0.5

[>>> pprint_config(digest=True)

3.1.4 Input and output formats

UDPipe supports a variety of input and output formats. For convenience, they are listed in the documentation of the

corpy.udpipe.Model.process () method, but the most up-to-date, reference list is always available in the UDPipe
API docs.

One format which is particularly useful is the CoNLL-U format: it’s the format of the UniversalDependencies project,
and as such, it’s intimately associated with UDPipe, which is also part of the project. Reading up on the CoNLL-

U format can help you better understand how UDPipe represents tagged and parsed text, especially some of the less
straightforward features (e.g. multi-word tokens and empty nodes).

Say you have a small two-sentence corpus in the “horizontal” format (one sentence per line, words separated by spaces),
and you want to tag it, parse it, and output it in the CONLL-U format. You can do it like so:

-

.
>>> horizontal = """Je zima .
. Bude snézit ."""

>>> conllu_sents = list(m.process(horizontal, in_format="horizontal", out_format="conllu
="))

>>> conllu_sents

['# newdoc\n# newpar\n# sent_id = 1\nl\tJe\tbyt\tAUX\tVB-S---3P-AA---\
—tMood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Fin|Voice=Act\t2\tcop\

—t_\t_\n2\tzima\tzima\tNOUN\tNNFS1----- A----\
—»tCase=Nom|Gender=Fem|Number=Sing|Polarity=Pos\tO\troot\t_\t_\n3\t.\t.\tPUNCT\tZ:-------
G \t_\t2\tpunct\t_\t_\n\n', '# sent_id = 2\nl\tBude\tbyt\tAUX\tVB-S---3F-AA---\
—»tMood=Ind | Number=Sing|Person=3|Polarity=Pos|Tense=Fut |VerbForm=Fin|Voice=Act\t2\taux\t_
< \t_\n2\tsnézit\tsnézit\tVERB\tVf-------- A----\tAspect=Imp|Polarity=Pos|VerbForm=Inf\t0\
\Lﬁtroot\t_\t_\n3\t.\t.\tPUNCT\tZ: ————————————— \t_\t2\tpunct\t_\t_\n\n'] J

That’s a bit messy, but trust me that conllu_sents is just a list of two strings, each string representing one sentence.
Or, if you don’t trust me:

>>> len(conllu_sents)
2

>>> [type(x) for x in conllu_sents]
[<class 'str'>, <class 'str'>]

To give you an idea of the format, let’s just join the sentences and print them out:

-

>>> print("".join(conllu_sents), end="")

newdoc

newpar

sent_id = 1

1 Je byt AUX VB-S---3P-AA---_,
—-Mood=Ind|Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Fin|Voice=Act 2 o
-, Cop _ _

2 zima zima NOUN NNFS1----- Reee=y,
—.Case=Nom|Gender=Fem|Number=Sing |Polarity=Pos 0 root _ _

3 . . PUNCT Z:i-———————————- _ 2 punct _ _
sent_id = 2

(continues on next page)

12 Chapter 3. What is CorPy?

http://ufal.mff.cuni.cz/udpipe/api-reference
http://ufal.mff.cuni.cz/udpipe/api-reference
https://universaldependencies.org/format.html
https://universaldependencies.org
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
https://universaldependencies.org/format.html#words-tokens-and-empty-nodes

corpy, Release 0.5

(continued from previous page)

1 Bude byt AUX VB-S——-3F-AA———_,

—»Mood=Ind | Number=Sing|Person=3|Polarity=Pos|Tense=Fut |VerbForm=Fin|Voice=Act 2 o
< aux _ _

2 snézit snézit VERB VE---————- A---- Aspect=Imp|Polarity=Pos|VerbForm=Inf 0 .
. root _

\3 . . PUNCT Zi————————————— _ 2 punct _ _ J

3.1.5 Format conversion

The module can also be used just for loading/dumping data in any of the formats supported by UDPipe. That’s what
the load () and dump () functions are for. Input and output formats default to CoNLL-U.

s N

>>> from corpy.udpipe import load, dump
>>> sents = list(loadChorizontal, "horizontal™))
>>> pprint(sents)
[Sentence(
comments=["'# newdoc', '# newpar', '# sent_id = 1'],
words=[
Word(id=0, <root>),
Word(id=1, form='Je'),
Word(id=2, form='zima'),
Word(id=3, form='."')]),
Sentence(
comments=['# sent_id = 2'],
words=[
Word(id=0, <root>),
Word(id=1, form='Bude'),
Word(id=2, form='snézit'),
Word(id=3, form="'."')])]
>>> print("".join(dump(sents)), end="")
newdoc
newpar
sent_id
1 Je
2 zima
3

Il
—

1l
V]

sent_id
1 Bude
2 snézit
3

. J

You can mix and match this with tagging and parsing the data using a Model, if you prefer this more incremental
approach:

s Y

>>> m.tag(sents[0])

>>> m.parse(sents[0])

>>> pprint(sents)

[Sentence(
comments=["'# newdoc', '# newpar', '# sent_id = 1'],
words=[

(continues on next page)

3.1. Tag and parse text with UDPipe 13

corpy, Release 0.5

(continued from previous page)

Word(id=0, <root>),

Word(id=1,
form="Je"',
lemma="byt"',

xpostag="'VB-S---3P-AA---",
upostag="AUX",

feats=
— '"Mood=Ind | Number=Sing|Person=3|Polarity=Pos|Tense=Pres|VerbForm=Fin|Voice=Act',
head=2,
deprel="cop'),
Word(id=2,

form="zima',

lemma="zima"',

xpostag="NNFS1----- A----",

upostag="NOUN',
feats="'Case=Nom|Gender=Fem|Number=Sing|Polarity=Pos',

head=0,
deprel="root'),
Word(id=3,
form=".",
lemma=".",
xpostag='Z:------—-————- ',
upostag="PUNCT"',
head=2,
deprel="punct')]),
Sentence (
comments=["# sent_id = 2'],
words=[

Word(id=0, <root>),
Word(id=1, form='Bude'),
Word(id=2, form='snézit'),
Word(id=3, form='."')])]

As you can see, only the first sentence has been tagged and parsed. Note that the tag() and parse () methods modify
the sentence in place!

3.2 Tokenize and tag text with MorphoDiTa

3.2.1 Overview

The corpy.morphodita sub-package offers a more user friendly wrapper around the default Swig-generated Python
bindings for the MorphoDiTa morphological tagging and lemmatization framework.

The target audiences are:
* beginner programmers interested in NLP

 seasoned programmers who want to use MorphoDiTa through a more Pythonic interface, without having to
dig into the API reference and the examples, and who are not too worried about a possible performance hit as
compared with full manual control

Pre-trained tagging models which can be used with MorphoDiTa can be found here. Currently, Czech and English
models are available. Please respect their CC BY-NC-SA 3.0 license!

14 Chapter 3. What is CorPy?

https://github.com/ufal/morphodita
http://ufal.mff.cuni.cz/morphodita/api-reference
https://github.com/ufal/morphodita/tree/master/bindings/python/examples
http://ufal.mff.cuni.cz/morphodita#language_models

corpy, Release 0.5

At the moment, only a subset of the functionality offered by the MorphoDiTa API is available through corpy.
morphodita (tokenization, tagging).

If stuck, check out the module’s API reference for more details.
3.2.2 Tokenization
When instantiating a Tokenizer, pass in a string which will determine the type of tokenizer to create. Valid options

are "czech", "english", "generic" and "vertical" (cf. also the new_*_tokenizer methods in the MorphoDiTa
API reference).

>>> from corpy.morphodita import Tokenizer

>>> tokenizer = Tokenizer(''generic")

>>> for word in tokenizer.tokenize("foo bar baz"):
print (word)

foo

bar

baz

Alternatively, if you want to use the tokenizer associated with a MorphoDiTa *. tagger file you have available, you
can instantiate it using from_tagger().

If you’re interested in sentence boundaries too, pass sents=True to tokenize():

>>> for sentence in tokenizer.tokenize('foo bar baz'", sents=True):
print(sentence)

['foo', 'bar', 'baz'l]

3.2.3 Tagging

NOTE: Unlike tokenization, tagging in MorphoDiTa requires you to supply your own pre-trained tagging models (see
Overview above).

Initialize a new tagger:

>>> from corpy.morphodita import Tagger
>>> tagger = Tagger("./czech-morfflex-pdt.tagger")

Tokenize, tag and lemmatize a text represented as a string:

>>> from pprint import pprint

>>> tokens = list(tagger.tag('Je zima. Bude snézit."))
>>> pprint (tokens)

[Token(word="'Je', lemma='byt', tag='VB-S---3P-AAI--'),

Token(word="'zima', lemma='zima-1', tag='NNFS1----- A----"),
Token(word='."', lemma='.', tag='Z:--—-——---—-————- oF
Token(word="'Bude', lemma='byt', tag='VB-S---3F-AAI--'),
Token(word="'snézit', lemma='snézit', tag='Vf-------- A-I--"),
Token(word="."', lemma='.', tag='Z:----------——-—- "]

With sentence boundaries:

3.2. Tokenize and tag text with MorphoDiTa 15

http://ufal.mff.cuni.cz/morphodita/api-reference#tokenizer
http://ufal.mff.cuni.cz/morphodita/api-reference#tokenizer

corpy, Release 0.5

s N

>>> sents = list(tagger.tag('Je zima. Bude snézit.", sents=True))
>>> pprint(sents)
[[Token(word="Je', lemma='byt', tag='VB-S---3P-AAI--'),

Token(word="'zima', lemma='zima-1', tag='NNFS1----- A----"),
Token(word="."', lemma='."', tag='Z:--------—————-],
[Token(word="'Bude', lemma='byt', tag='VB-S---3F-AAI--'),
Token(word="'snézit', lemma='snéZzit', tag='Vf-------- A-I--"),
L Token(word="."', lemma='."', tag='Z:--------————- 11 J

Tag and lemmatize an already sentence-split and tokenized piece of text, represented as an iterable of iterables of
strings:

>>> tokens = list(tagger.tag([['Je', 'zima', '.'], ['Bude', 'snézit', '.']1))
>>> pprint (tokens)
[Token(word="'Je', lemma='byt', tag='VB-S---3P-AAI--'),

Token(word="zima', lemma='zima-1', tag='NNFS1----- A----"),
Token(word="."', lemma='.', tag='Z:------——————- ",
Token(word="'Bude', lemma='byt', tag='VB-S---3F-AAI--'),
Token(word="'snézit', lemma='snézit', tag='Vf-------- A-I--"),
L Token(word="."', lemma='.', tag='Z:-------—————--] J

3.3 Easily generate word clouds

The wordcloud package is great but I find the API a bit ceremonious, especially for beginners. Hence this wrapper to
make using it easier.

>>> from corpy.vis import wordcloud
>>> import os

>>> wc = wordcloud(os._ _doc__)

>>> wc.to_image() . show()

In a Jupyter notebook, just inspect the wc variable to display the wordcloud.

For further details, see the docstring of the wordcIloud () function.

3.4 Isolate interactive code from the global environment

As you do exploratory work in an interactive Python session (e.g. IPython in the terminal, or JupyterLab or a similar
web notebook interface), you inevitably accumulate a big hairy blob of global state. Suddenly, a function you’ve written
starts misbehaving. You suspect it has inadvertently become entangled in all that global state, accessing global variables
it shouldn’t, and you’d like to disentangle it. Where to begin?

corpy.util.clean_env() totherescue! Itallows you torun ablock of code in a sanitized global environment (where
the exact meaning of sanitized is fairly customizable). When using an IPython kernel, load the corpy extension, so
that you can use the cell/line magic command it provides:

In [1]: %load_ext corpy
In [2]: foo =1

(continues on next page)

16 Chapter 3. What is CorPy?

https://amueller.github.io/word_cloud/
https://ipython.readthedocs.io/en/stable/interactive/magics.html

corpy, Release 0.5

(continued from previous page)

In [3]: print(foo)
1

In [4]: %%clean_env
.: print(foo)

NameError Traceback (most recent call last)
Cell In[4], line 2

1 with clean_env(blacklist=None, whitelist=None, strict=True, restore_
—builtins=True, modules=False, callables=False, upper=False, dunder=False, sunder=True):
----> 2 print(foo)

NameError: name 'foo' is not defined

In [5]: %clean_env print(foo)
NameError Traceback (most recent call last)
Cell In[5], line 2

1 with clean_env(blacklist=None, whitelist=None, strict=True, restore_
—builtins=True, modules=False, callables=False, upper=False, dunder=False, sunder=True):
----> 2 print(foo)

NameError: name 'foo' is not defined

As you can see, clean_env() temporarily hides the global variable foo. Why is this useful? When working inter-
actively, you often end up creating a lot of global variables while experimenting. Some of them might even end up
disappearing from the written record, as you edit and delete cells. This (partially) invisible global state accumulates
and can lead to hard to debug problems, where typos pass silently, code mysteriously fails because builtin functions
have been overwritten, etc. See examples below.

Note: In order to not be restricted to IPython interactive sessions, the examples below primarily use clean_env()
as a context manager, which works everywhere, including the vanilla Python REPL and scripts. In IPython though,
the magic command shown above is much more convenient, and offers all of the same features. Run %clean_env? in
IPython for details on how to use them.

One option you should definitely know about is %clean_env -X, which is equivalent to with
clean_env(strict=False): ... (see the end of the next section for details on what that does).

3.4.1 Global variables can hide typos

For instance, say you’re trying to sort numbers. You define a list of numbers called numbers, try the sorted function,
which seems to work, so you proceed to write your own wrapper function, sort_numbers. (Inreal life, the functionality
would obviously be something more involved, to justify writing a wrapper.)

>>> numbers = [0, 3, 1, 2, 4]
>>> sorted(numbers)

[6, 1, 2, 3, 4]

>>> # J typo!

(continues on next page)

3.4. Isolate interactive code from the global environment 17

corpy, Release 0.5

(continued from previous page)

>>> def sort_numbers(numbrs):
return sorted(numbers)

But in doing so, whoops! You make a typo. You name the function’s argument numbrs without an e, but the variable
name you access in the function’s body is numbers with an e. Since there’s no local variable called numbers in the
function, it would normally fail with a NameError. But remember that we’ve previously defined a global with that
same exact name as part of our interactive experimentation prior to writing the function. So instead of the typo leading
to an error, the name will be resolved in the global scope.

The tricky thing is, if you only test your function with your previously defined numbers variable, everything will seem
to work fine — by accident:

>>> sort_numbers (nhumbers)
[0, 1, 2, 3, 4]

The problem only reveals itself when using another list as input — you get back the sorted version of numbers again:

>>> sort_numbers([0, 2, 1])
[0, 1, 2, 3, 4]

Now, what corpy.util.clean_env() does is to provide a context manager which runs a block of code in a sanitized
global environment, as a way to temporarily pretend that (most of) your interactive experimentation (a.k.a. polluting the
global environment) didn’t happen. Running the same code under the context manager yields the expected NameError,
which helpfully points to a problem with our code:

>>> from corpy.util import clean_env
>>> with clean_env():
sort_numbers([0, 2, 1])

Traceback (most recent call last):

File ..., line 2, in <module>
sort_numbers([®, 2, 1])
File ..., line 2, in sort_numbers

return sorted(numbers)
NameError: name 'numbers' is not defined

Which gives you a good hint what the problem might be, so you can now fix your function and try again:

>>> # J typo fixed
>>> def sort_numbers(numbers):
return sorted(numbers)

>>> with clean_env():
sort_numbers([0, 2, 1])

[0, 1, 2]

By default, clean_env tries to be “smart” about which globals to remove and which to keep, e.g. it leaves functions
alone, as you’ve probably noticed, since we were able to call sort_numbers within the with block. If the defaults
don’t suit you though, you can tweak its behavior by using blacklists or whitelists and other options. Check out the
documentation for corpy.util.clean_env() for further details.

One common case where you might want to change the defaults is to make clean_env a little bit more lenient, so that

18 Chapter 3. What is CorPy?

corpy, Release 0.5

it allows all global variables within the with block itself, and only starts pruning them inside function calls. Typically,
you’ll want to use previously defined (global) variables to test your functions under clean_env, but by default, you
can’t, obviously, because clean_env hides them:

>>> with clean_env():
sort_numbers (numbers)

Traceback (most recent call last):
File ..., line 2, in <module>
sort_numbers (numbers)
NameError: name 'numbers' is not defined

That’s where the strict=False option comes in. In the code below, it allows referring to the numbers global variable
as part of the with block, and only hides it during the function call.

>>> with clean_env(strict=False):
sort_numbers (numbers)

[®’ 1’ 2! 3’ 4]

While the non-strict approach is convenient, it requires a slightly different and more complicated strategy, which makes
it somewhat slower. That’s why it’s opt-in, even though it’s very often what you want.

3.4.2 Breaking code by re-assigning built-in functions

Another type of problem that beginners tend to run into is that they accidentally overwrite a built-in function. For
instance, if you’re learning about sorting, what do you call a list you’ve just sorted? Well, sorted of course!

[>>> sorted = sorted(numbers)

Unfortunately, now you can’t sort anymore — you’ve pointed sorted to your list, instead of the sorting function it points
to by default.

>>> sorted(numbers)
Traceback (most recent call last):
File ..., line 1, in <module>
sorted(numbers)
TypeError: 'list' object is not callable

If this happens in the students’ own code, they might realize what they broke and how to fix it. However, if this ends
up breaking example code provided by the teacher, the student might not realize it’s their fault — after all, how could
they break code they didn’t write?

This is why by default, clean_env restores any overwritten builtins, because it assumes reassigning builtins is a mis-
take:

>>> with clean_env():
sorted

<built-in function sorted>
>>> sorted
e, 1, 2, 3, 4]

3.4. Isolate interactive code from the global environment 19

corpy, Release 0.5

Note: If you accidentally overwrite a built-in function, you can get it back by importing it from the builtins module,
e.g. from builtins import sorted.

3.5 Rule-based grapheme to phoneme conversion for Czech

In addition to rules, an exception system is also implemented which makes it possible to capture less regular pronun-
ciation patterns.

3.5.1 Usage

The simplest public interface is the transcribe () function. See its docstring for more information on the types of
accepted input as well as on output options and other available customizations. Here are a few usage examples — default
output is SAMPA:

>>> from corpy.phonetics import cs
>>> cs.transcribe("mas hlad")
[(lml, la:l’ IZI), (lh\\l’ lll’ lal’ 't')]

But other options including IPA are available:

>>> cs.transcribe("mas hlad", alphabet="IPA")
[(lml’ lal’ ll)’ (ll’ lll’ lal’ ltl)]

If you can, always pass a Tagger to transcribe () (see Tokenize and tag text with MorphoDiTa on where to download
tagger models). The function will use it to attempt to be smarter about the pronunciation of words based on their
morphemic structure. For instance, without a tagger, both neuron and neurozeny will have a diphthong:

>>> cs.transcribe('"'neuron")

[(lnl’ lE_ul, lrl, '0', lnl)]

>>> cs.transcribe(''neurozeny')

[(lnl’ lE_ul’ |rl’ '0', lzl’ IEI’ Inl’ li:l)]

With a tagger, the ne- in neurozeny will be identified as a prefix and -eu- will therefore be correctly rendered as a
two-vowel sequence:

>>> from corpy.morphodita import Tagger

>>> tagger = Tagger("./czech-morfflex-pdt.tagger")
>>> cs.transcribe('"neurozeny", tagger=tagger)
[('n', "E', "u', 'r', 'o', 'z', 'E', 'n', 'i:")]

While neuron will correctly retain its diphthong:

>>> cs.transcribe(''neuron", tagger=tagger)
[(lnl, lE_ul, 'rl, |ol, lnl)]

Hyphens can be used to manually prevent interactions between neighboring phones, e.g. prevent assimilation of voic-
ing:

>>> cs.transcribe("mas -hlad")
[(lml’ la:l’ ISI)’ (lh\\l’ lll’ lal’ 't')]

20 Chapter 3. What is CorPy?

corpy, Release 0.5

Or prevent adjacent vowels from merging into a diphthong, even without a tagger:

>>> cs.transcribe('"'ne-urozeny")
[(lnl’ IEI’ lul’ lr|’ 'O', 'Z', IEI’ lnl’ li:l)]

As you can see, these special hyphens get deleted in the process of transcription, so if you want a literal hyphen, it must
be inside a token with either no alphabetic characters, or at least one other non-alphabetic character:

>>> cs.transcribe("- --- -.- -hlad?")
[l_l’ l___l’ l_._l’ l_hlad?v]

In general, tokens containing non-alphabetic characters (modulo the special treatment of hyphens described above) are
passed through as is:

>>> cs.transcribe("mas ? hlad")
[(lml, la:l’ IZI), |?l, (lh\\l’ lll’ lal’ ltl)]

And you can even configure some of them to constitute a blocking boundary for interactions between phones (notice

2\

that unlike in the previous example, “mas” ends with a /S/ — assimilation of voicing wasn’t allowed to spread past the

“ ”),

>>> cs.transcribe("mas .. hlad", prosodic_boundary_symbols={".."})
[(lml’ la:l’ ISI), l..l’ (lh\\l, lll, lal, 't')]

Finally, when the input is a single string, it’s simply split on whitespace, but you can also provide your own tokenization.
E.g. if your input string contains unspaced square brackets to mark overlapping speech, this is probably not the output
you want:

>>> cs.transcribe("[mas] hlad")
['[mas]", C("h\\', 'l', 'a', 't")]

But if you pretokenize the input yourself according to rules that make sense in your situation, you’re good to go:

>>> cs.transcribe(["[", "mas", "]1", "hlad"])
[l[l’ (lml’ la:l’ IZI)’ l]l’ (lh\\l’ lll’ lal’ ltl)]

3.5.2 Acknowledgments

The choice of (X-)SAMPA and IPA transcription symbols follows the guidelines published by the Institute of Phonetics,
Faculty of Arts, Charles University, Prague, which are hereby gratefully acknowledged.

3.6 Wrangle corpora in the vertical format

3.6.1 Overview

Tools for parsing corpora in the vertical format devised originally for CWB, used also by (No)SketchEngine. It would
have been nice if verticals were just standards compliant XML, but they appeared before XML, so they’re not. Hence
this.

NOTE: The examples below are currently not tested because they require the syn2015. gz vertical file to be available,
which is large and should not be freely distributed.

3.6. Wrangle corpora in the vertical format 21

https://fonetika.ff.cuni.cz/o-fonetice/foneticka-transkripce/czech-sampa/
http://cwb.sourceforge.net/
https://nlp.fi.muni.cz/trac/noske/

corpy, Release 0.5

>>> import pytest
>>> pytest.skip("examples not tested")

3.6.2 lterating over positions in a vertical file

This allows you to iterate over all positions while keeping track of the structural attributes of the structures they’re
contained within, without risking errors from hand-coding this logic every time you need it.

-

>>> from corpy.vertical import Syn2015Vertical
>>> from pprint import pprint
>>> v = Syn2015Vertical ("path/to/syn2015.gz")
>>> for i, position in enumerate(v.positions()):
if i % 100 == 0:
structural attributes of position
pprint(v.sattrs)
print()
position itself
pprint(position)
print()
elif i > 100:
break
{'doc': {'audience': 'GEN: obecné publikum',
"author': 'Typlt, Jaromir',
'authsex': 'M: muz',
'biblio':
'imaginace.',
"first_published': '1993',
'genre': 'X: neuvedeno',
'genre_group': 'X: neuvedeno',
'id': 'pi291',
'isbnissn': '80-7110-132-X",
'issue': '',
'medium': 'B: kniha',
'periodicity': 'NP: neperiodicka publikace',
'publisher': 'Prazska imaginace',
'pubplace': 'Praha',
'pubyear': '1993',
'srclang': 'cs: ceStina',
'subtitle': 'Groteskni mytus',
'title': 'Zapas s rodokmenem',
"translator': 'X',
"transsex': 'X: neuvedeno',
"txtype': 'NOV: préza',
"txtype_group': 'FIC: beletrie'},
p': {'id"': 'pi291:1:1', 'type': 'normal'},
s': {'id": 'pi291:1:1:1'},
'text': {'author': '', 'id':

'pi291:1', 'section': '

'"Typlt, Jaromir (1993): Zapas s rodokmenem. Praha:

Prazska '

ll}}

, 'section_orig':

Position(word="'ZAPAS', lemma='z&pas', tag=UtklTag(pos='N"', sub='N"', gen='I", num='S’",.

v v v v

—case="1"', pgen="'-', pnum='-', pers='-', tense='-',

grad="-', neg='A', act='-', pl3="-",

(continues on next page)

22

Chapter 3. What is CorPy?

corpy, Release 0.5

(continued from previous page)

- pl4='-', var='-', asp='-'), proc='T', afun="ExD', parent='0', eparent='0', prep='"', p_
—lemma="'"', p_tag='"', p_afun="'"', ep_lemma='"', ep_tag='"', ep_afun='")
{'doc': {'audience': 'GEN: obecné publikum',

'author': 'Typlt, Jaromir',

'authsex': 'M: muz',

'biblio': 'Typlt, Jaromir (1993): Zapas s rodokmenem. Praha: Prazska '

'imaginace.',

'"first_published': '1993',

'genre': 'X: neuvedeno',

'genre_group': 'X: neuvedeno',

'id': 'pi291',

'isbnissn': '80-7110-132-X",

'issue': '',

'medium': 'B: kniha',

'periodicity': 'NP: neperiodicka publikace',

'publisher': 'Prazskd imaginace',

'pubplace': 'Praha',
'pubyear': '1993',
'srclang': 'cs: ceStina',
'subtitle': 'Groteskni mytus',
'title': 'Zapas s rodokmenem',
'translator': 'X',
'"transsex': 'X: neuvedeno',
"txtype': 'NOV: proéza',
"txtype_group': 'FIC: beletrie'},
p': {'id': 'pi291:1:3', 'type': 'normal'},
s': {'id': 'pi291:1:3:2'},
'text': {'author': '', 'id': 'pi291:1', 'section': '', 'section_orig': ''}}

Position(word='chvil', lemma='chvile', tag=UtklTag(pos='N', sub='N', gen='F', num='P',.

—,case='2"', pgen="'-', pnum='-', pers='-', tense='-', grad='-', neg='A', act='-"', pl3='-',
- pl4='-', var="-', asp='-'), proc='M', afun="Atr', parent='-1', eparent='-1', prep='"',.
—p_lemma="nékolik', p_tag='Ca--4----------- ', p_afun="Adv', ep_lemma='nékolik', ep_tag=
~'Ca--4---—-—--—---- ', ep_afun="Adv')

.

3.6.3 Performing frequency distribution queries

This can be done elegantly and fairly quickly with search(). All you have to do is provide a match function, which
identifies positions which the query should match, and a count function, which specifies what should be counted for
each match.

The return value is an index of occurrences and the total size of the corpus. The index is a dictionary of numpy array
of position indices within the corpus, which can be further processed e.g. using ipm() or arf () to compute different
types of frequencies.

>>> from corpy.vertical import Syn2015Vertical, ipm, arf
>>> v = Syn2015Vertical("path/to/syn2015.9z")

log progress every 50M positions

>>> v.report = 50_000_000

>>> def match(posattrs, sattrs):

(continues on next page)

3.6. Wrangle corpora in the vertical format 23

corpy, Release 0.5

L

(continued from previous page)

match all nouns within txtype_group "FIC: beletrie"
. return sattrs["doc"]["txtype_group"] == "FIC: beletrie" and posattrs.tag.pos ==
R

>>> def count(posattrs, sattrs):
at each matched position, record the txtype and lemma
return sattrs["doc"]["txtype"], posattrs.lemma

>>> index, N = v.search(match, count)
Processed 0 lines in 0:00:00.007382.
Processed 50,000,000 lines in 0:05:58.185566.
Processed 100,000,000 lines in 0:11:35.394294.

J

NOTE: this was run on a desktop workstation, with the data being stored on a networked filesystem. If the performance
of any future versions on a similar task becomes significantly worse than this ballpark, it should be considered a bug.

-

.

absolute frequency

>>> len(index[("NOV: proéza", "plisen")])

211

relative frequency (instances per million)

>>> ipm(index[("NOV: préza", "plisen")], N)
1.747430618598555

average reduced frequency (takes into account dispersion)
>>> arf(index[("NOV: proéza", "plisen")], N)
54.220727998809153

~

3.6.4 Subclass Vertical for your custom corpus

If you have a corpus with a different structure, you can easily adapt the tools by subclassing Vertical. See its docstring
for further info, or the implementation of Syn2015Vertical for a practical example.

3.7 Command line scripts

CorPy also comes with a few (possibly) handy command line utilities:
* xc: Prints frequency information about extended grapheme clusters in text files.
e zip-verticals: Zips two verticals of the same corpus with different positional attributes together.

Run them with the --help option to get usage instructions.

24 Chapter 3. What is CorPy?

corpy, Release 0.5

3.8 corpy.udpipe

Tokenizing, tagging and parsing text with UDPipe.

exception corpy.udpipe.UdpipeError

An error which occurred in the ufal .udpipe C extension.

class corpy.udpipe.Model (model_path)

A UDPipe model for tagging and parsing text.

Parameters
model_path (str or pathlib.Path) - Path to the pre-compiled UDPipe model to load.

process (text, *, tag=True, parse=True, in_format=None, out_format=None)
Process input text, yielding sentences one by one.

The text is always at least tokenized, and optionally morphologically tagged and syntactically parsed, de-
pending on the values of the tag and parse arguments.

Parameters
* text (str) — Text to process.
* tag (bool) — Perform morphological tagging.
» parse (bool) — Perform syntactic parsing.
e in_format (None or str) - Input format (cf. below for possible values).
¢ out_format (None or str)- Output format (cf. below for possible values).
The input text is a string in one of the following formats (specified by in_format):
* None: freeform text, which will be sentence split and tokenized by UDPipe
e "conllu": the CoNLL-U format
* "horizontal": one sentence per line, word forms separated by spaces
e "vertical": one word per line, empty lines denote sentence ends
The output format is specified by out_format:
* None: native ufal.udpipe objects, suitable for further manipulation in Python
e "conllu", "horizontal" or "vertical": cf. above
e "epe": the EPE (Extrinsic Parser Evaluation 2017) interchange format
e "matxin": the Matxin XML format
e "plaintext": reconstruct text with original spaces, discarding annotations

New input and output formats may be added with new releases of UDPipe; for an up-to-date list, consult
the UDPipe API reference.

tag(sent)

Perform morphological tagging on sentence.
Modifies sent in place.

Parameters
sent (ufal.udpipe.Sentence) — Sentence to tag.

3.8.

corpy.udpipe 25

https://universaldependencies.org/docs/format.html
http://ufal.mff.cuni.cz/udpipe/api-reference

corpy, Release 0.5

parse(sent)

Perform syntactic parsing on sentence.
Modifies sent in place.

Parameters
sent (ufal.udpipe.Sentence) — Sentence to parse.

corpy.udpipe.load(corpus, in_format='conllu")

Load corpus in input format.
Parameters
e corpus (str) — The data to load.
e in_format (str) — Cf. the documentation of Model.process().

Returns
A generator of sentences (ufal.udpipe.Sentence).

corpy.udpipe.dump (sent_or_sents, out_format="conllu")

Dump sentence or sentences in output format.
Parameters
* sent_or_sents — The data to dump.
* out_format (str) — Cf. the documentation of Model .process().

Returns
A generator of strings, corresponding to the serialized sentences. One final additional string may
contain any closing markup, if required by the output format.

corpy.udpipe.pprint (obj)
Pretty-print object.

This is a convenience wrapper over IPython.lib.pretty.pprint () for easier importing.

corpy.udpipe.pprint_config(*, digest=True)
Configure pretty-printing of ufal.udpipe objects.

Parameters
digest (bool) — Show only attributes with interesting values (other than ' ' or -1)

3.9 corpy.morphodita

Convenient and easy-to-use MorphoDiTa wrappers.

class corpy.morphodita.Tokenizer (tokenizer_type: str)
A wrapper API around the tokenizers offered by MorphoDiTa.

Parameters
tokenizer_type — Tokenizer type, see below for possible values.

tokenizer_type is typically one of:
* "czech": atokenizer tuned for Czech
* "english": atokenizer tuned for English

* "generic": a generic tokenizer

26 Chapter 3. What is CorPy?

corpy, Release 0.5

* "vertical": a simple tokenizer for the vertical format, which is effectively already tokenized (one word

per line)

Specifically, the available tokenizers are determined by the new_*_tokenizer static methods on the Mor-

phoDiTa tokenizer class described in the MorphoDiTa API reference.

classmethod from_tagger(tagger_path: str| Path) — t.Self
Load tokenizer associated with tagger file.

tokenize (text: str, sents: Literal[False]) — Iterator[str]

tokenize (text: str, sents: Literal[True]) — Iterator[list[str]]

tokenize (text: str, sents: bool = False) — Iterator[str] | Iterator[list[str]]
Tokenize text.

Parameters

¢ text — Text to tokenize.

* sents — If True, return an iterator of lists of tokens, each list being a sentence, instead of

a flat iterator of tokens.

Note that MorphoDiTa performs both sentence splitting and tokenization at the same time, but this method

iterates over tokens without sentence boundaries by default:

>>> from corpy.morphodita import Tokenizer

>>> t = Tokenizer("generic")

>>> for word in t.tokenize('"foo bar baz'"):
print (word)

foo

bar

baz

If you want to iterate over sentences (lists of tokens), set sents=True:

>>> for sentence in t.tokenize('"foo bar baz", sents=True):

print(sentence)

['foo', 'bar', 'baz'l]

class corpy.morphodita.Token(word, lemma, tag)

word: str
Alias for field number 0

lemma: str

Alias for field number 1
tag: str

Alias for field number 2

class corpy.morphodita.Tagger (tagger_ path: Path | str)

A MorphoDiTa morphological tagger and lemmatizer.

Parameters
tagger_path — Path to the pre-compiled tagging models to load.

tag(text: str| Iterable[Iterable[str]], *, sents: Literal[False] = False, guesser: bool = False, convert: str |

None = None) — Iterator[Token]

3.9. corpy.morphodita

27

https://ufal.mff.cuni.cz/morphodita/api-reference#tokenizer

corpy, Release 0.5

None = None) — lterator[list[corpy.morphodita.tagger.Token])

None) — lIterator[Token] | Iterator[list[corpy.morphodita.tagger. Token]]

Perform morphological tagging and lemmatization on text.

tag(text: str| Iterable[Iterable[str]], *, sents: Literal[True] = False, guesser: bool = False, convert: str |

tag(text: str| Iterable[Iterable[str]], *, sents: bool = False, guesser: bool = False, convert: str | None =

If text is a string, sentence-split, tokenize and tag that string. If it’s an iterable of iterables of strings
(typically a list of lists of strings), then take each nested iterable as a separate sentence and tag it, honoring

the provided sentence boundaries and tokenization.
Parameters

* text — Input text:

* sents - If True, return an iterator of lists of tokens, each list being a sentence, instead of

a flat iterator of tokens.

» guesser - If True, use the morphological guesser provided with the tagger (if available).

» convert — Conversion strategy to apply to lemmas and / or tags before outputting them.
One of "pdt_to_conll2009", "strip_lemma_comment” or "strip_lemma_id", or

None if no conversion is required.

>>> tagger = Tagger("./czech-morfflex-pdt.tagger")
>>> from pprint import pprint

>>> tokens = list(tagger.tag('Je zima. Bude snézit.'))
>>> pprint (tokens)

[Token(word="'Je', lemma='byt', tag='VB-S---3P-AAI--'),

Token(word="zima', lemma='zima-1', tag='NNFS1----- A----"),
Token(word="."', lemma='.', tag='Z:------——————- ",
Token(word="Bude', lemma='byt', tag='VB-S---3F-AAI--'),
Token(word="snézit', lemma='snézit', tag='Vf-------- A-I--"),
Token(word="."', lemma='.', tag='Z:------—————-—--]

>>> tokens = list(tagger.tag([['Je', 'zima', '.'], ['Bude', 'snézit',

>>> pprint (tokens)
[Token(word="'Je', lemma='byt', tag='VB-S---3P-AAI--'),

Token(word="zima', lemma='zima-1', tag='NNFS1----- A----"),
Token(word="."', lemma='.', tag='Z:-------—————-- 9,
Token(word="Bude', lemma='byt', tag='VB-S---3F-AAI--'),
Token(word="snézit', lemma='snézit', tag='Vf-------- A-I--"),
Token(word="."', lemma='.', tag='Z:-----———————- 1]

>>> sents = list(tagger.tag('Je zima. Bude snézit.", sents=True))

>>> pprint(sents)
[[Token(word="'Je', lemma='byt', tag='VB-S---3P-AAI--'),

Token(word="zima', lemma='zima-1', tag='NNFS1----- A----"),
Token(word="."', lemma='.', tag='Z:------——————- 1,
[Token(word='Bude', lemma='byt', tag='VB-S---3F-AAI--'),
Token(word="'snézit', lemma='snézit', tag='Vf-------- A-I--"),
Token(word="."', lemma='.', tag='Z:-----—————-—--- 11

D)

None) — Iterator[Token]

None) — lterator[list[corpy.morphodita.tagger. Token]]

Tterator[Token] | Iterator[list[corpy.morphodita.tagger. Token]]

tag_untokenized(text: str, *, sents: Literal[False] = False, guesser: bool = False, convert: str | None =
tag_untokenized(text: str, *, sents: Literal[True] = False, guesser: bool = False, convert: str | None =

tag_untokenized(text: str, *, sents: bool = False, guesser: bool = False, convert: str | None = None) —

28

Chapter 3. What is CorPy?

corpy, Release 0.5

This is the method tag() delegates to when fext is a string. See docstring for tag() for details about
parameters.

tag_tokenized(text: Iterable[Iterable[str]], *, sents: Literal[False] = False, guesser: bool = False, convert:
str | None = None) — Iterator[Token]

tag_tokenized (fext: Iterable[Iterable[str]], *, sents: Literal[True] = False, guesser: bool = False, convert:
str | None = None) — lterator[list[corpy.morphodita.tagger.Token]]

tag_tokenized (fext: Iterable[Iterable[str]], *, sents: bool = False, guesser: bool = False, convert: str |
None = None) — lIterator|[Token] | Iterator[list[corpy.morphodita.tagger. Token]]

This is the method tag() delegates to when text is an iterable of iterables of strings. See docstring for
tag () for details about parameters.

3.10 corpy.vis

Convenience wrappers for visualizing linguistic data.

corpy.vis.size_in_pixels(width, height, unit='"in', ppi=300)

Convert size in inches/cm to pixels.
Parameters
* width — width, measured in unit
* height — height, measured in unit
e unit — "in" for inches, "cm" for centimeters
* ppi — pixels per inch

Returns
(width, height) in pixels

Return type
(int, int)

Sample values for ppi:

* for displays: you can detect your monitor’s DPI using the following website: <https://www.infobyip.com/
detectmonitordpi.php>; a typical value is 96 (of course, double that for HiDPI)

* for print output: 300 at least, 600 is high quality
corpy.vis.wordcloud(data, size=(400, 400), *, rounded=False, fast=True, fast_limit=800, **kwargs)
Generate a wordcloud.

If data is a string, the wordcloud is generated using the method WordCloud.generate_from_text (), which
automatically ignores stopwords (customizable with the stopwords argument) and includes “collocations” (i.e.
bigrams).

If data is a sequence or a mapping, the wordcloud is generated using the method WordCloud.
generate_from_frequencies() and these preprocessing responsibilities fall to the user.

Parameters

» data — input data — either one long string of text, or an iterable of tokens, or a mapping of
word types to their frequencies; use the second or third option if you want full control over
the output

3.10. corpy.vis 29

https://www.infobyip.com/detectmonitordpi.php
https://www.infobyip.com/detectmonitordpi.php

corpy, Release 0.5

» size - size in pixels, as a tuple of integers, (width, height); if you want to specify the size
in inches or cm, use the size_in_pixels() function to generate this tuple

» rounded — whether or not to enclose the wordcloud in an ellipse; incompatible with the mask
keyword argument

» fast — when True, optimizes large wordclouds for speed of generation rather than precision
of word placement

e fast_limit — speed optimizations for “large” wordclouds are applied when the requested
canvas size is larger than fast_limit**2

* kwargs — remaining keyword arguments are passed on to the wordcloud.WordCloud ini-
tializer

Returns
The word cloud.

Return type
wordcloud.WordCloud

3.11 corpy.phonetics.cs

Perform rule-based phonetic transcription of Czech.

Some frequent exceptions to the otherwise fairly regular orthography-to-phonetics mapping are overridden using a
pronunciation lexicon.

class corpy.phonetics.cs.Phone(value: str, *, word_boundary: bool = False)
A single phone.

You probably don’t need to create these by hand. They’re used internally by ProsodicUnit to keep track of
word boundaries while keeping all the phones in a flat list.

class corpy.phonetics.cs.ProsodicUnit (orthographic: List[str])
A prosodic unit which should be transcribed as a whole.

This means that various connected speech processes are emulated at word boundaries within the unit as well as
within words.

Parameters
orthographic (1ist of str)- The orthographic transcript of the prosodic unit.

phonetic (¥, alphabet: str = 'SAMPA’, hiatus=False, tagger: Tagger | None = None) — List[Tuple[str, ...]]
Phonetic transcription of ProsodicUnit.

corpy.phonetics.cs.transcribe (phrase: str| Iterable[str], *, alphabet="sampa’, hiatus=False, tagger: Tagger
| None = None, prosodic_boundary_symbols: Set[str] | None = None) —
List[str | Tuple[str, ...]]

Phonetically transcribe phrase.

Note: It is highly recommended to provide an instance of corpy.morphodita.Tagger via the tagger argu-
ment. This enables smarter treatment of vowel sequences emerging as a result of prefixing. Without a tagger,
both e.g. neuron and neurozeny will have -eu- transcribed as a diphthong, even though it’s only appropriate in
the first case.

30 Chapter 3. What is CorPy?

corpy, Release 0.5

A few simple cases are covered even in the absence of a tagger via the exceptions mechanism: search for - in
exceptions.tsv.

phrase is either a string (in which case it is split on whitespace) or an iterable of strings (in which case it’s
considered as already tokenized by the user).

Transcription is attempted for tokens which consist purely of alphabetical characters and possibly hyphens (-).
Other tokens are passed through unchanged. Hyphens have a special role: they prevent interactions between
graphemes or phones from taking place, which means you can e.g. cancel assimilation of voicing in a cluster
like tb by inserting a hyphen between the graphemes: t-b. They are removed from the final output. If you want a
literal hyphen, it must be inside a token with either no alphabetic characters, or at least one other non-alphabetic
character (e.g. -, ---, -hlad?, etc.).

Returns a list where transcribed tokens are represented as tuples of strings (phones) and non-transcribed
tokens (which were just passed through as-is) as plain strings.

alphabet is one of SAMPA, IPA, CS or CNC (case insensitive) and determines the symbol alphabet used in the
phonetic transcript.

When hiatus=True, a /j/ phone is added between a high front vowel and a subsequent vowel.

Various connected speech processes such as assimilation of voicing are emulated even across word bound-
aries. By default, this happens irrespective of intervening non-transcribed tokens. If you want some types
of non-transcribed tokens to constitute an obstacle to interactions between phones, pass them as a set via
the prosodic_boundary_symbols argument. E.g. prosodic_boundary_symbols={"?", ".."} will prevent
CSPs from being emulated across ? and . . tokens.

3.12 corpy.vertical

Parse and query corpora in the vertical format.

class corpy.vertical.Vertical (path)

Base class for a corpus in the vertical format.

Create subclasses for specific corpora by at least specifying a list of struct_names and posattrs as class
attributes.

Parameters
path (str) — Path to the vertical file to work with.

struct_names: List[str] = []

A list of expected structural attribute tag names.

posattrs: List[str] = []

A list of expected positional attributes.

open()
Open the vertical file in self.path.

Override this method in subclasses to specify alternative ways of opening, e.g. using gzip.open().

parse_position(position)

Parse a single position from the vertical.

Override this method in subclasses to hook into the position parsing process.

3.12. corpy.vertical 31

https://github.com/dlukes/corpy/blob/master/src/corpy/phonetics/exceptions.tsv

corpy, Release 0.5

positions(parse_sattrs=True, ignore_fn=None, hook_fn=None)

Iterate over the positions in the vertical.

Atany point during the iteration, the structural attributes corresponding to the current position are accessible
via self.sattrs.

Parameters

* parse_sattrs (bool) — Whether to parse structural attrs into a dict (default) or just leave
the original string (faster).

e ignore_fn (function (posattrs, sattrs)) - If given, then evaluated at each posi-
tion; if it returns True, then the position is completely ignored.

* hook_fn (function (posattrs, sattrs))— If given, then evaluated at each position.

search (match_fn, count_fn=None, **kwargs)
Search the vertical, creating an index of what’s been found.

Parameters

e match_£n (function (match_fn, count_fn))-Evaluated ateach position to see if the
position matches the given search.

e count_£n — Evaluated at each matching position to determine what should be counted at
that position (in the sense of being tallied as part of the resulting frequency distribution).
If it returns a list, it’s understood as a list of things to count.

¢ kwargs — Passed on to positions().

Returns
The frequency index of counted “things” and the size of the corpus.

Return type
(dict, int)
class corpy.vertical.Syn2015Vertical (path)
A subclass of Vertical for the SYN2015 corpus.
Refer to Vertical for API details.
struct_names: List[str] = ['doc', 'text', 'p', 's', 'hi', 'lb']
A list of expected structural attribute tag names.

posattrs: List[str] = ['word', 'lemma', 'tag', 'proc', 'afun', 'parent', 'eparent',
'prep', 'p_lemma', 'p_tag', 'p_afun', 'ep_lemma', 'ep_tag', 'ep_afun']

A list of expected positional attributes.

open()
Open the vertical file in self.path.

Override this method in subclasses to specify alternative ways of opening, e.g. using gzip.open().

parse_position(position)
Parse a single position from the vertical.

Override this method in subclasses to hook into the position parsing process.

corpy.vertical.ipm(occurrences, N)

Relative frequency of occurrences in corpus, in instances per million.

32 Chapter 3. What is CorPy?

corpy, Release 0.5

corpy.vertical.arf(occurrences, N)

Average reduced frequency of occurrences in corpus.

class corpy.vertical.ShuffledSyn2015Vertical (path)
A subclass of Vertical for the SYN2015 corpus, shuffled.

Refer to Vertical for API details.

3.13 corpy.util

Small utility functions.

corpy.util.clean_env (*, blacklist: Iterable[str] | None = None, whitelist: Iterable[str] | None = None, strict:
bool = True, restore_builtins: bool = True, modules: bool = False, callables: bool =
False, upper: bool = False, dunder: bool = False, sunder: bool = True)

Run a block of code in a sanitized global environment.

A context manager which temporarily removes global variables from scope:

>>> foo = 42
>>> with clean_env():
foo

Traceback (most recent call last):

NameError: name 'foo' is not defined

The original environment is restored at the end of the block:

>>> foo
42

Also works as a decorator, which is like wrapping the entire function body with the context manager:

>>> @clean_env()
. def return_foo(Q):
return foo

>>> return_foo()
Traceback (most recent call last):

NameError: name 'foo' is not defined

By default, clean_env tries to be clever and leave e.g. functions alone, as well as other objects which are likely
to be “legitimate” globals. It also restores overwritten builtins.

This is useful e.g. for testing answers in student assignments, because it will ensure that functions which acci-
dentally capture global variables instead of using arguments fail.

Parameters

* blacklist — A list of global variable names to always remove, irrespective of the other
options.

* whitelist — A list of global variable names to always keep, irrespective of the other options.

3.13. corpy.util 33

corpy, Release 0.5

» strict — In non-strict mode, allow global variables in the current scope, i.e. only start
pruning within function calls. NOTE: This is slower because it requires tracing the function
calls. Also, when using clean_env as a function decorator, non-strict probably doesn’t make
sense.

restore_builtins — Make sure that the conventional names for built-in objects point to
those objects (beginners often use 1ist or sorted as variable names).

modules — Prune variables which refer to modules.
* callables — Prune variables which refer to callables.

* upper — Prune variables with all-uppercase identifiers (underscores allowed), which are
likely to be intentional global variables (constants and the like).

* dunder — Prune variables whose name starts with a double underscore.
* sunder — Prune variables whose name starts with a single underscore.

class corpy.util.LongestCommonSubstring(startl: int, start2: int, length: int)

Describes longest common substring between two strings.
Returned by longest_common_substring().

startl: int
Alias for field number 0; substring start index in first string

start2: int
Alias for field number 1; substring start index in second string
length: int
Alias for field number 2; substring length
corpy.util.longest_common_substring(stri: str, str2: str) — LongestCommonSubstring | None

Find longest common substring between str/ and str2, if it exists.

Note: Uses an efficient dynamic programming algorithm which runs in O(len(strl) x len(str2)) time. Still, it
computes the full table describing all substrings, which I’'m sure could be avoided. For instance, we could keep
track of the longest streak and zero down on it / exit early as soon as there’s too little of the strings remaining
to yield any competitors. But since this function is meant to be used on words as input, which tend to be fairly
short, the added overhead is probably not worth it, not to mention the potential headaches caused by a more
complicated implementation.

34 Chapter 3. What is CorPy?

CHAPTER
FOUR

LICENSE

Copyright © 2016—present UCNK/David Luke§
Distributed under the GNU General Public License v3.

35

http://korpus.cz
http://www.gnu.org/licenses/gpl-3.0.en.html

corpy, Release 0.5

36 Chapter 4. License

CHAPTER
FIVE

INDICES AND TABLES

* genindex
* modindex

¢ search

37

corpy, Release 0.5

38 Chapter 5. Indices and tables

corpy.
corpy.
corpy.
corpy.
corpy.
corpy.

morphodita, 26
phonetics.cs, 30
udpipe, 25

util, 33
vertical, 31
vis, 29

PYTHON MODULE INDEX

39

corpy, Release 0.5

40 Python Module Index

A

arf () (in module corpy.vertical), 32

C

clean_env () (in module corpy.util), 33
corpy.morphodita
module, 26
corpy.phonetics.cs
module, 30
corpy.udpipe
module, 25
corpy.util
module, 33
corpy.vertical
module, 31
corpy.vis
module, 29

D

dump Q) (in module corpy.udpipe), 26

F

from_tagger() (corpy.morphodita.Tokenizer
method), 27

class

ipm(Q) (in module corpy.vertical), 32

L

lemma (corpy.morphodita.Token attribute), 277

length (corpy.util. LongestCommonSubstring attribute),
34

load) (in module corpy.udpipe), 26

longest_common_substring() (in module corpy.util),
34

LongestCommonSubstring (class in corpy.util), 34

M

Model (class in corpy.udpipe), 25
module
corpy.morphodita, 26

INDEX

corpy.phonetics.cs, 30
corpy.udpipe, 25
corpy.util, 33
corpy.vertical, 31
corpy.vis, 29

O

open() (corpy.vertical.Syn2015Vertical method), 32
open() (corpy.vertical. Vertical method), 31

P

parse() (corpy.udpipe.Model method), 25

parse_position() (corpy.vertical.Syn2015Vertical
method), 32

parse_position() (corpy.vertical. Vertical method), 31

Phone (class in corpy.phonetics.cs), 30

phonetic() (corpy.phonetics.cs.ProsodicUnit method),
30

posattrs (corpy.vertical.Syn2015Vertical attribute), 32

posattrs (corpy.vertical. Vertical attribute), 31

positions() (corpy.vertical. Vertical method), 31

pprint () (in module corpy.udpipe), 26

pprint_config() (in module corpy.udpipe), 26

process() (corpy.udpipe.Model method), 25

ProsodicUnit (class in corpy.phonetics.cs), 30

S

search() (corpy.vertical.Vertical method), 32

ShuffledSyn2015Vertical (class in corpy.vertical),
33

size_in_pixels() (in module corpy.vis), 29

startl (corpy.util. LongestCommonSubstring attribute),
34

start2 (corpy.util. LongestCommonSubstring attribute),
34

struct_names (corpy.vertical. Syn2015Vertical at-
tribute), 32

struct_names (corpy.vertical. Vertical attribute), 31

Syn2015Vertical (class in corpy.vertical), 32

T

tag (corpy.morphodita.Token attribute), 277

41

corpy, Release 0.5

tag(Q (corpy.morphodita.Tagger method), 27

tag(Q (corpy.udpipe.Model method), 25

tag_tokenized() (corpy.morphodita.Tagger method),
29

tag_untokenized() (corpy.morphodita. Tagger
method), 28

Tagger (class in corpy.morphodita), 277

Token (class in corpy.morphodita), 27

tokenize() (corpy.morphodita.Tokenizer method), 27

Tokenizer (class in corpy.morphodita), 26

transcribe () (in module corpy.phonetics.cs), 30

U

UdpipeError, 25

\Y

Vertical (class in corpy.vertical), 31

W

word (corpy.morphodita.Token attribute), 27
wordcloud () (in module corpy.vis), 29

42

Index

	Installation
	Help and feedback
	What is CorPy?
	Tag and parse text with UDPipe
	Overview
	Processing text
	Pretty-printing options
	Input and output formats
	Format conversion

	Tokenize and tag text with MorphoDiTa
	Overview
	Tokenization
	Tagging

	Easily generate word clouds
	Isolate interactive code from the global environment
	Global variables can hide typos
	Breaking code by re-assigning built-in functions

	Rule-based grapheme to phoneme conversion for Czech
	Usage
	Acknowledgments

	Wrangle corpora in the vertical format
	Overview
	Iterating over positions in a vertical file
	Performing frequency distribution queries
	Subclass Vertical for your custom corpus

	Command line scripts
	corpy.udpipe
	corpy.morphodita
	corpy.vis
	corpy.phonetics.cs
	corpy.vertical
	corpy.util

	License
	Indices and tables
	Python Module Index
	Index

